


 In the social science researchers point of 
view, the requirements of traditional 
frequentistic statistical analysis are very 
challenging. 

 For example, the assumption of normality 
of both the phenomena under investigation 
and the data is prerequisite for traditional 
parametric frequentistic calculations. 
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 In situations where 
◦ a latent construct cannot be appropriately 

represented as a continuous variable, 
◦ ordinal or discrete indicators do not reflect 

underlying continuous variables, 
◦ the latent variables cannot be assumed to be 

normally distributed, 
traditional Gaussian modeling is clearly not 

appropriate. 

 In addition, normal distribution analysis 
sets minimum requirements for the number 
of observations, and the measurement level 
of variables should be continuous. 

3



 Frequentistic parametric statistical 
techniques are designed for normally 
distributed (both theoretically and 
empirically) indicators that have linear 
dependencies.
◦ Univariate normality

◦ Multivariate normality

◦ Bivariate linearity
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5(Nokelainen, 2008, p. 119)



 The upper part of the figure 
contains two sections, namely 
“parametric” and “non-
parametric” divided into eight 
sub-sections (“DNIMMOCS 
OLD”). 

 Parametric approach is viable 
only if 
◦ 1) Both the phenomenon 

modeled and the sample 
follow normal distribution.

◦ 2) Sample size is large enough 
(at least 30 observations).

◦ 3) Continuous indicators are 
used.

◦ 4) Dependencies between the 
observed variables are linear. 

 Otherwise non-parametric 
techniques should be applied.
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D = Design (ce = controlled experiment, co = 

correlational study)

N = Sample size 

IO = Independent observations

ML = Measurement level (c = continuous, d = discrete, 

n = nominal)

MD = Multivariate distribution (n = normal, similar)

O = Outliers

C = Correlations

S = Statistical dependencies (l = linear, nl = non-linear)
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Bayesian method 
(1) is parameter-free and the user input is not 
required, instead, prior distributions of the model 
offer a theoretically justifiable method for affecting 
the model construction; 
(2) works with probabilities and can hence be 
expected to produce robust results with discrete 
data containing nominal and ordinal attributes; 
(3) has no limit for minimum sample size; 
(4) is able to analyze both linear and non-linear  

dependencies; 
(5) assumes no multivariate normal model;
(6) allows prediction. 
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 Probability is a mathematical construct that 
behaves in accordance with certain rules and 
can be used to represent uncertainty. 
◦ The classical statistical inference is based on a 

frequency interpretation of probability, and the 
Bayesian inference is based on ”subjective” or ”degree 
of belief” interpretation.

 Bayesian inference uses conditional 
probabilities to represent uncertainty. 

 P(H | E,I) - the probability of unknown things 
or ”hypothesis” (H), given the evidence (E) and 
background information (I). 
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 The essence of Bayesian inference is in the 
rule, known as Bayes' theorem, that tells us 
how to update our initial probabilities P(H) 
if we see evidence E, in order to find out 
P(H|E).
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P(E|H) •P(H)

P(H|E)=

P(E|H)•P(H) + P(E|~H) •P(~H)

• A priori probability

• Conditional probability

• Posteriori probability



 The theorem was invented by an english 
reverend Thomas Bayes (1701-1761) and 
published posthumously (1763).
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 Bayesian inference comprises the following 
three principal steps:
(1) Obtain the initial probabilities P(H) for the unknown 

things. (Prior distribution.)
(2) Calculate the probabilities of the evidence E (data) 

given different values for the unknown things, i.e., 
P(E | H). (Likelihood or conditional distribution.)

(3) Calculate the probability distribution of interest 
P(H | E) using Bayes' theorem. (Posterior distribution.)

 Bayes' theorem can be used sequentially. 
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◦ If we first receive some evidence E (data), and calculate 
the posterior P(H | E), and at some later point in time 
receive more data E', the calculated posterior can be 
used in the role of prior to calculate a new posterior 
P(H | E,E') and so on. 

◦ The posterior P(H | E) expresses all the necessary 
information to perform predictions. 

◦ The more evidence we get, the more certain we will 
become of the unknowns, until all but one value 
combination for the unknowns have probabilities so 
close to zero that they can be neglected.
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 Company A is  employing workers on short 
term jobs that are well paid.

 The job sets certain prerequisites to applicants 
linguistic abilities. 

 Earlier all the applicants were interviewed, but 
nowadays it has become an impossible task as 
both the number of open vacancies and 
applicants has increased enormously. 

 Personnel department of the company was 
ordered to develop a questionnaire to 
preselect the most suitable applicants for the 
interview. 
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 Psychometrician who developed the instrument 
estimates that it would work out right on 90 
out of 100 applicants, if they are honest.

 We know on the basis of earlier interviews that  
the terms (linguistic abilities) are valid for one 
per 100 person living in the target population. 

 The question is: If an applicant gets enough 
points to participate in the interview, is he or 
she hired for the job (after an interview)?
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 A priori probability P(H) is described by the 
number of those people in the target population 
that really are able to meet the requirements of 
the task (1 out of 100 = .01).

 Counter assumption of the a priori is P(~H) that 
equals to 1-P(H), thus it is = .99. 

 Psychometricians beliefs about how the 
instrument works is called conditional probability
P(E|H) = .9. 

 Instruments failure to indicate non-valid 
applicants, i.e., those that are not able to succeed 
in the following interview, is stated as P(E|~H) 
that equals to  .1.
◦ These values need not to sum to one! 
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P(E|H) • P(H)

P(H|E)=

P(E|H)• P(H) + P(E|~H) • P(~H)
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(.9) • (.01)

P(H|E)=

(.9) • (.01) + (.1) • (.99)

= .08

• A priori probability

• Conditional probability

• Posterior probability
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 What if the measurement error of the 
psychometricians instrument would have 
been 20 per cent?
◦ P(E|H)=0.8   P(E|~H)=0.2
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 What if the measurement error of the  
psychometricians instrument would have 
been only one per cent?
◦ P(E|H)=0.99 P(E|~H)=0.01
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 Quite often people tend to estimate the 
probabilities to be too high or low, as 
they are not able to update their beliefs 
even in simple decision making tasks 
when situations change dynamically 
(Anderson, 1995).
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 One of the most important rules educational science 
scientific journals apply to judge the scientific merits of any 
submitted manuscript is that all the reported results should 
be based on so called „null hypothesis significance testing 
procedure‟ (NHSTP) and its featured product, p-value. 

 Gigerenzer, Krauss and Vitouch (2004, p. 392) describe 
„the null ritual‟ as follows: 
◦ 1) Set up a statistical null hypothesis of “no mean 

difference” or “zero correlation.” Don‟t specify the 
predictions of your research or of any alternative 
substantive hypotheses; 

◦ 2) Use 5 per cent as a convention for rejecting the null. If 
significant, accept your research hypothesis; 

◦ 3) Always perform this procedure. 
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◦ A p-value is the probability of the observed data (or 
of more extreme data points), given that the null 
hypothesis H0 is true, P(D|H0) (id.). 

 The first common misunderstanding is that the p-
value of, say t-test, would describe how probable it is 
to have the same result if the study is repeated many 
times (Thompson, 1994). 

 Gerd Gigerenzer and his colleagues (id., p. 393) call 
this replication fallacy as “P(D|H0) is confused with 1—
P(D).”
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 The second misunderstanding, shared by both applied 
statistics teachers and the students, is that the p-value 
would prove or disprove H0. However, a significance 
test can only provide probabilities, not prove or 
disprove null hypothesis. 

 Gigerenzer (id., p. 393) calls this fallacy an illusion of 
certainty: “Despite wishful thinking, p(D|H0) is not the 
same as P(H0|D), and a significance test does not and 
cannot provide a probability for a hypothesis.”

◦ A Bayesian statistics provide a way of calculating a 
probability of a hypothesis (discussed later in this 
section).
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 My statistics course grades (Autumn 2006, n = 
12) ranged from one to five as follows: 1) n = 
3; 2) n = 2; 3) n = 4; 4) n = 2; 5) n = 1, 
showing that the lowest grade frequency (”1”) 
from the course is three (25.0%). 
◦ Previous data from the same course (2000-2005) shows that 

only five students out of 107 (4.7%) had the lowest grade. 

 Next, I will use the classical statistical approach 
(the likelihood principle) and Bayesian statistics 
to calculate if the number of the lowest course 
grades is exceptionally high on my latest 
course when compared to my earlier stat 
courses. 
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 There are numerous possible reasons behind 
such development, for example, I have become 
more critical on my assessment or the students 
are less motivated in learning quantitative 
techniques. 

 However, I believe that the most important 
difference between the last and preceding 
courses is that the assessment was based on a 
computer exercise with statistical 
computations. 
◦ The preceding courses were assessed only with essay 

answers. 
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 I assume that the 12 students earned their 
grade independently (independent 
observations) of each other as the computer 
exercise was conducted under my or my 
assistant‟s supervision. 

 I further assume that the chance of getting the 
lowest grade (), is the same for each student. 
◦ Therefore X, the number of lowest grades (1) in the 

scale from 1 to 5 among the 12 students in the latest 
stat course, has a binomial (12, ) distribution: X ~ 
Bin(12, ). 

◦ For any integer r between 0 and 12,
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 The expected number of lowest grades is 
12(5/107) = 0.561. 

 Theta is obtained by dividing the expected 
number of lowest grades with the number of 
students: 0.561 / 12  0.05. 

 The null hypothesis is formulated as follows: 
H0:  = 0.05, stating that the rate of the lowest 
grades from the current stat course is not a 
big thing and compares to the previous 
courses rates. 

30



 Three alternative hypotheses are formulated to 
address the concern of the increased number 
of lowest grades (6, 7 and 8, respectively): H1: 
 = 0.06; H2:  = 0.07; H3:  = 0.08.
◦ H1: 12/(107/6) = .67 -> .67/12=.056  .06
◦ H2: 12/(107/7) = .79 -> .79/12=.065  .07
◦ H3: 12/(107/8) = .90 -> .90/12=.075  .08
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 To compare the hypotheses, we calculate 
binomial distributions for each value of .

 For example, the null hypothesis (H0) 
calculation yields

32017.

)05.1(05.
2177280

479001600

)05.1(05.
)!312(!3

!12

)05.1(05.
3

12
),|(

3123

3123

3123







































nrP 



 The results for the alternative hypotheses are 
as follows: 
◦ PH1(3|.06, 12)  .027; 
◦ PH2(3|.07, 12)  .039; 
◦ PH3(3|.08, 12)  .053. 

 The ratio of the hypotheses is roughly 1:2:2:3 
and could be verbally interpreted with 
statements like “the second and third 
hypothesis explain the data about equally well”, 
or “the fourth hypothesis explains the data 
about three times as well as the first 
hypothesis”. 
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 Lavine (1999) reminds that P(r|, n), as a 
function of r (3) and  {.05; .06; .07; .08}, 
describes only how well each hypotheses 
explains the data; no value of r other than 3 
is relevant. 
◦ For example, P(4|.05, 12) is irrelevant as it does 

not describe how well any hypothesis explains 
the data. 

◦ This likelihood principle, that is, to base 
statistical inference only on the observed data 
and not on a data that might have been observed, 
is an essential feature of Bayesian approach.
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 The Fisherian, so called „classical approach‟
to test the null hypothesis (H0 :  = .05) 
against the alternative hypothesis (H1 :  > 
.05) is to calculate the p-value that defines 
the probability under H0 of observing an 
outcome at least as extreme as the outcome 
actually observed:
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 As an example, the first part of the formula is 
solved as follows:
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 After calculations, the p-value of .02 would 
suggest H0 rejection, if the rejection level of 
significance is set at 5 per cent. 
◦ Calculation of p-value violates the likelihood 

principle by using P(r|, n) for values of r other than 
the observed value of r = 3 (Lavine, 1999): 
 The summands of P(4|.05, 12), P(5|.05, 12), …, P(12|.05, 

12) do not describe how well any hypothesis explains 
observed data.
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 A Bayesian approach will continue from the 
same point as the classical approach, 
namely probabilities given by the binomial 
distributions, but also make use of other 
relevant sources of a priori information. 
◦ In this domain, it is plausible to think that the 

computer test (“SPSS exam”) would make the 
number of total failures more probable than in 
the previous times when the evaluation was 
based solely on the essays. 

◦ On the other hand, the computer test has only 40 
per cent weight in the equation that defines the 
final stat course grade: [.3(Essay_1) + .3(Essay_2) 
+ .4(Computer test)]/3 = Final grade. 
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◦ Another aspect is to consider the nature of the 
aforementioned tasks, as the essays are distance work 
assignments while the computer test is to be 
performed under observation. 

◦ Perhaps the course grades of my earlier stat courses 
have a narrower dispersion due to violence of the 
independent observation assumption? 

 For example, some students may have copy-pasted text 
from other sources or collaborated without a permission. 

◦ As we see, there are many sources of a priori
information that I judge to be inconclusive and, thus, 
define that null hypothesis is as likely to be true or 
false. 
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 This a priori judgment is expressed 
mathematically as P(H0)  1/2  P(H1) + 
P(H2) + P(H3). 

 I further assume that the alternative 
hypotheses H1, H2 or H3 share the same 

likelihood P(H1)  P(H2)  P(H3)  1/6.

 These prior distributions summarize the 
knowledge about  prior to incorporating 
the information from my course grades. 
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 An application of Bayes' theorem yields
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 Similar calculations for the alternative 
hypotheses yields P(H1|r=3)  .16; P(H2|r=3) 
 .29; P(H3|r=3)  .31. 

 These posterior distributions summarize 
the knowledge about  after incorporating 
the grade information. 

 The four hypotheses seem to be about 
equally likely (.30 vs. .16, .29, .31). 
◦ The odds are about 2 to 1 (.30 vs. .70) that the 

latest stat course had higher rate of lowest 
grades than 0.05. 
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 The difference between the 
classical and Bayesian statistics 
would be only philosophical 
(probability vs. inverse probability) 
if they would always lead to similar 
conclusions. 
◦ In this case the p-value would suggest 

rejection of H0 (p = .02).
◦ Bayesian analysis would also suggest  

evidence against  = .05 (.30 vs. .70, 
ratio of .43). 
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 What if the number of the lowest 
grades in the last course would be 
two? 
◦ The classical approach would not 

anymore suggest H0 rejection (p = .12). 

◦ Bayesian result would still say that 
there is more evidence against than for 
the H0 (.39 vs. .61, ratio of .64). 
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